INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howeil information Company

300 North Zeeb Road. Ann Arbor, M 48106-1346 USA
313:761-4700 800.521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Order Number 9500049

Application of local to unity asymptotic theory to time series
regression

Elliott, Graham, Ph.D.

Harvard University, 1994

Copyright ©1994 by Elliott, Graham. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, M1 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



HARVARD UNIVERSITY

THE GRADUATE SCHOOL OF ARTS AND SCIENCLES

THIESIS ACCEPTANCE CERTIFICATE

The undersigned, appointed by the
Division
Department of Economics

Comuimittee

have examined a thesis cncitled

Application of Local to Unity Asymptotic
Theory to Time Series Regression

prcscntcd by Graham Elliott

candidate for the degree of Doctor of Philosophy and hereby
certify that it is worthy of acceptance.
/ -

Signature /’v"/

Typed nanie  James Stock

/‘\ Cs“bct,u(/‘\/(«t\

Typed namnc .. Gary Chamberlaln

Signature

Signature ¢

Typed name . Takatoshi ..I’tO. ................................
Signature C. >0

Typed Name Guido mbens~
Date April 27, 1994

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Application of Local te Unity Asymptotic Theory to Time
Series Regression

A thesis presented
by
Graham Elliott
to
The Graduate School of Arts and Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Economics

Harvard University
Cambridge, Massachusetts

May 1994

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© 1994 by Graham Elliott
All rights reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

Firstly, I would like to thank those who, prior to my visit here, encouraged me in my
studies. These include Warwick McKibben, who suggested studying in the US; and Ron
Bewley, who helped me see the enjoyment of pursuing an academic career, and my family
for supporting me in this. I would also like to thank the Harvard Club of Australia and the

Menzies Foundation for subsidizing my first year of study.

In Cambridge, I have learned much from both my colleagues and the faculty. In particular,
Antonio Fatas and Judy Hellerstein contributed greatly. I express thanks to Professors
Alberto Alesina, Dale Jorgenson, and Mark Watson for their advice and comments. I have
benefitted greatly from comments given by Professor Gary Chamberlain. I thank Professor
Guido Imbens for the enormous amount of time he has spent in reading and rereading my
work, and for the comments he has made, and also Professor Takatoshi Ito, who has given
up much time to my work and education. 1 have been lucky to have had a complete and
thorough apprenticeship in the study of time series econometrics from my main advisor,
Professor Jim Stock, for which I am greatly appreciative. Without this training, this thesis

would not exist.

Lastly, I thank my friends, especially Dagmar, who supported me in my endeavor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

In classical hypothesis testing in time series regression, the asymptotic theory employed
depends on the stochastic process followed by the regressors. Any approach to inference
must either make assumptions on the form of these stochastic processes or use pretests as
a selection criteria. This thesis examines this issue when there is serious doubt as to the
stochastic properties of the regressor, when shocks to the regressor are persistent. This

characterization appears to well reflect most time series data available in economics.

The first chapter provides an overview of the model and the problem for hypothesis testing.
When the largest root of the regressor is large, we are unable to decide with data whether
or not there is a unit root or a root local to unity. However, the asymptotic distribution

employed in second stage hypothesis testing depends on this distinction.

Chapter two examines optimal unit root tests under alternate assumptions that have generally
been employed, deriving efficient tests for this case. This chapter shows that the
assumptions on the generating process matter in the construction of optimal tests, and

provide a new set of tests which can be employed to learn about the largest root in the

regressor variable.

In the third chapter, the common practice of conditioning on an exact unit root in the

regressor and employing asymptotically efficient cointegrating vector estimation techniques

for hypothesis testing is examined. It is shown that even for arbitrarily small deviations
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from the assumption of a unit root, this procedure can lead to severe overrejection of the
true null hypothesis. The tests can have size up to 1. It is argued in this chapter that unit

root pretests cannot overcome this problem.

The final chapter, chapter four, examines hypothesis tests for unbiasedness in the forward
exchange rate market. It is shown that the interpretation of tests of various specifications
depends on the stochastic process followed by the regressor, as argued above. Potential
reasons are given for the rejections of the null hypothesis in the literature are given,
including the use of the results in chapter three to show the problems of recent investigations
of the null hypothesis using cointegration methods. A new test to distinguish between

unbiasedness and static expectations is also introduced.
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Chapter 1: The General Problem in Perspective.

I. Introduction

The general model under investigation in this thesis can be written as a triangular bivariate
system of two related time series,

Yie = Ay * @Yy * Yy, @

Yo =y * Yy *+ Vy
where t=1...T, d,, and d,, are deterministic components (d,,=0 will be assumed for the
generating process throughout)’, y,, and y,, are both univariate with k fixed initial values,
s may be either zero or 1, v,=(v,,,v5)’, and ®(L)v,=¢, where $(L) has all roots outside the
unit circle. In addition, ¢, is assumed to be a martingale difference sequence so E[e] =0 and
E(ee,’)=X given information at time t-1 (fourth moments are also assumed to exist). The
equations are linked through the correlated residvals. The economic model to be estimated
determines s; either a contemporaneous relationship is examined and s=0 or some dynamic
ordering is of interest and s=1. Of primary interest is estimation of and inference on the
parameter v when « is close to one. This model is triangular as y, does not enter the

equation for y,,.

This model contains sufficient generality to capture the features of many models of interest

! The deterministics here are the relevant alternatives for describing persistance in y,, to
stochastic roots, and estimates of « will be inconsistant against such alternatives if d,, is left
out of the regression, so it will be kept in the specifications.

1
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in applied time series economics. When a=1, the relationship between y,, and y,, is said
in the terminology of Engle and Granger (1987) to be a cointegrating relationship, with a
cointegrating vector of (1 ~y). When « is not necessarily equal to one, models such as
equation (1) are still of great interest as economic theories often yield such relationships,
independent of the value of «v. If s=1, regardless of the value taken by «, we say that y,,
Granger causes [in the sense of Granger (1969)] y,. Such temporal orderings are often

derived from theory in economics.

Both of these types of regression models have been widely applied in testing theories in
macroeconomics, finance and international finance. Examples of cointegration models
estimated in macroeconomics include tests for long run money demand equations {Stock and
Watson (1993), Hoffman and Raasche (1991)] and tests of consumption theory [Ogaki
(1992)]. In finance, Campbell and Shiller (1987) test the present value model using the
cointegration methodology. In international finance the concept and theoretical structure of
cointegration includes applications such as testing for long run purchasing power parity
[Corbae et al (1992), Choudry et al. (1991)], and long run forward market unbiasedness

[Evans and Lewis (1993), Mark et al. (1994)].

Alternately, tests for Granger causality in macroeconomics include tests of Hall’s (1978)
consumption random walk hypothesis [Hall (1978), Mankiw and Shapiro (1985)]. In finance
tests of the unpredictability of stock market returns or returns in other financial markets
[Fama (1965) shows that returns should be unpredictable if markets are efficient] revolve

around estimating models such as equation (1) above [e.g. Hardevoulis (1990), Hamilton
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(1992)]. Similar models obtain in international finance.

A summary of recent applications, including models which are transformations of equation

(1), is contained in Appendix 1.

It is well known that the properties of estimates of +y in such models depends on the value
taken by «, and on the cross correlation of the errors. If « is fixed and less than one in
absolute value, then with the dynamics and simultaneity suitably modelled the t statistic on
7 is asymptotically distributed as a normal with mean zero and variance one. If a=1, then
the usual limit theory assumptions are violated and the limit distribution for the estimate of
v takes a different form [Stock (1987)]. Further, for « close to one, then the usual limit
theorem results appear to break down in practice for empirically relevant samples sizes, in

the sense that they do not provide a good approximation to the finite sample distribution.

This thesis is concerned with the case of o unknown but in the region of one. The focus
on this case arises from both theoretical and empirical motivations. The theoretical
motivation is that it is unusual for an economic model to suggest the exact value of . This
only occurs rarely, and then in very special cases of economic models [e.g. Hall (1978)
shows consumption to be a random walk under the dual assumptions of quadratic utility and
also thaﬁ the risk free interest rate and discount rate are constant and equivalent, Fama
(1965) derives the efficient markets hypothesis, for which changes in asset prices are not
forecastable on the assumption of risk neutral investors]. In many of these models, the

assumptions required to obtain a unit root are very restrictive and arguments for their
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violation are easily made. The empirical motivation is that most macroeconomic, finance
and international finance data exhibits strong trending of unknown form?, such that estimates
of a typically are large and insignificantly different from one [for macroeconomic data,

Nelson and Plosser (1982), for exchange rate data, Meese and Singleton (1582)].

There are two approaches generally taken by researchers in confronting such models when
« is not given by theory. The first is to simply remove the problem of dependence by
making an assumption about the existence or not of a unit root. In this case, either the
potential problem is ignored completely and the normal distribution is employed, or often
the "weight of previous evidence’ is that variables are I(1) so the methods of cointegration
or non standard asymptotics are used. The alternative procedure, one which is more popular
in current literature, is to pretest for a unit root in y,,, and proceed conditional on this result
as if it were true. In these situations the researcher fails to reject the existence of a unit

root, and proceeds conditional on the existence of a unit root in subsequent tests.

This thesis, and other papers written in conjunction with this thesis, examine a number of
questions from a classical viewpoint. How much can we learn from the data about «? What
is the effect of pretesting? What is the effect of proceeding on the assumption that « is
equal to one when this is not true? How can we conduct inference when « is unknown?
Do these results hold any real implications for applied questions in practice? Each of these

questions play a role in understanding and evaluating inferences made on models which can

2 This trending could be due to either stochastic trending, i.e. « close to one, or
deterministic trending, i.e. d,,#0.
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be written in the form of equation (1).

The remainder of this chapter discusses how these questions and the results presented in this
thesis fit in with both the rest of the literature in econometrics and more specifically with
the literature on time series econometrics. The goal is to understand the question at hand,
various precedents for solutions, their applicability to this specific problem, and the lessons
we may draw for applied research using time series data. In the next section, the asymptotic
theory employed to answer the questions raised is motivated. Here it is shown that
hypothesis tests depend asymptotically on a nuisance parameter (related to «), where the
nuisance parameter summarizes the persistence in y,,. Section 3 examines the question of
inference on «, and the information we can expect to receive from tests on this nuisance
parameter. This section places chapter 2 of this thesis in perspective. Section 4 examines
the testing of hypotheses on -y from a classical (frequentist) testing perspective, reviewing
the approach taken in the time series literature and in the econometric literature more
generally. Chapter 3 of this thesis examines the most popular approach to hypothesis testing
in this framework, that of "asymptotically efficient cointegrating’ estimation tests. The fifth
section examines alternative approaches to hypothesis testing in the models considered here:
those of nonparametric tests, bootstrapping and of Bayesian approaches. The sixth section

sums up.

II Asymptotic Theory for y

For models such as that given in the previous section, a common statistic employed in
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undertaking hypothesis tests for theories involving the parameter vy is to examine the t
statistic (or pivot) on the estimated value for -y from the OLS regression of the second

equation in (1). That is, construct t,, which is given by

GRS @

Y se(})

where 7, is the value taken by < under the null hypothesis being tested.

If || <1, then estimation of y by ordinary least squares (OLS) and estimating the standard
error of the estimate in the usual (robust) way as w(Zy,..2)'"?, where @? = 8§,,(0)/27 [the
spectral density of v,, at frequency zero, scaled by 2x]?, yields the result that t has an
asymptotic normal distribution with mean zero and variance 1 provided that y,, is
uncorrelated with all leads and lags of v,. If this is not the case, the researcher can use

instrumental variables or seemingly unrelated regression techniques.

If instead o=1, then t, calculated as above has the limit distribution given by

(&)

1
t, =~ 515 + (1-8%)%z
where 74 is the distribution of the OLS t statistic testing the hypothesis a=1 (detrended by
the trend specification in d,) and is a function of standard Brownian motions [see Stock

(1994) for details of the statistic 7,, it was originally derived by Dickey and Fuller (1979),

and percentiles of the distribution are given in Fuller (1976)], 6=0,,/(2,,$%,)"%, @=S,(0)/2=

3 In the case of general serial correlation of unknown form as in the model in equation
(1), the usual estimator of the variance is inconsistent and must be replaced by an estimate
of S,,(0), see Hansen (1982) or White (1984).

6
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[the spectral density matrix of the residuals of equation 1 at frequency zero, scaled by 2],
and z is a standard normal variable which is asymptotically independent of 7. Note that
here, unlike the previous case, no transformations are required if y,, and v, are correlated,

this simultaneity is subsumed by the nuisance parameter .

There are two practical problems facing the applied researcher who wishes to conduct
classical inference on 7y when the true value of « is unknown. The first is that, except for
the special case of §=0, it can be seen by directly comparing the two limit distributions that
the applicable limit distribution for t, depends on the value taken by «. This lack of
independence of the limit distribution on the nuisance parameter o« presents the chief
difficulty in hypothesis testing on : the classically constructed t statistic does not have a
distribution independent of the parameters of the model. If we consider o as a nuisance
parameter, this result shows that t tests on vy depend on this nuisance parameter. In either

case, however, estimation of the parameter v is consistent for its population value.

The second problem confronting the applied econometrician arises from the different
asymptotic behavior of estimates of -y given the size of the largest root in y,,, i.e. «. This
is the well known knife edge case of v converging at rate T for a=1, and at rate /T for
|| fixed and less than one [see Stock (1987)]. The difficulty here is that for values close
to one but not exactly equal to one, the asymptotic normal distribution of t, (derived under
the assumption that « is fixed and less than one in absolute value) does not provide a good
approximation to the distribution of t, in finite samples of the size usually encountered in

practice. This is well documented in practice [Evans and Savin (1981,1984), Ahtola and
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Tiao (1984)]. The intuition for this breakdown is straightforward; whilst the asymptotic
distributions exhibit this sharp discontinuity at =1, small sample distributions will be
continuous in «. This gives the direct implication that for some range over «, asymptotic

distributions derived with « fixed will be poor approximations of small sample distributions.

This breakdown can be seen graphically in figure 1. This documents the empirical
distribution of t, (solid line) along with the standard normal distribution (long dashes)*. The
particular model estimated here is
Y =095y, +¢, @
You =YV * &y
where the residuals v, are serially uncorrelated with variance covariance matrix I, ,,=0.9,
L,1=L,=1, and T=100 (the values for o and T are chosen as empirically relevant

possibilities, the shift documented is increasing in I,,, so this choice highlights the problem).

The most apparent feature of the difference between the distribution with one hundred
observations and the normal distribution is that the empirical distribution is shifted
significantly to the left. It is also more peaked. This difference between asymptotic theory
and the empirical distribution with relevant sample sizes presents a problem for applied
researchers when « is unknown, in the sense that even if « could be selected so that it was
known that |a] <1, the asymptotic normal distribution may not be a useful guide to the

distribution of t, for the sample size at hand.

* The empirical distribution is the distribution of estimated t, with 100 observations and
20000 Monte Carlo replications. The lack of serial correlation was treated as known.

8
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Figure 1: I(0) and Local to I(1) Distribution Approximations.

100 200 300 400 500 600 700 800

0

Notes: The graph shows the histogram of t statistics testing the true null hypothesis for the
model in equation (4) with 100 observations. This is given by the solid line. The long
dashed distribution is the N(0,1) asymptotic distribution of t, calculated for « fixed and equal
to 0.95. The short dashed line is the local to unity asymptotic distribution calculated with
c=-5. See the text surrounding equation (4) for the full specification of this model.
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An alternate approach to obtaining asymptotic distributions to approximate the distribution
of statistics such as t, where o is close to but not necessarily equal to one is to consider the
distribution obtained when « is a sequence, i.e. a=1+c/T, where ¢ is fixed. This is the
approach taken by Bobkoski (1983), Cavanagh (1985), Phillips (1987), Chan and Wei (1987)
and Chan (1988). In the actual problem, we do not consider « to be converging to one
asymptotically, this characterization of « is used only in deriving the asymptotic distribution

given a value for « and a fixed sample size.

In this case for a close to one, in the local to unity sense, the limiting distribution of t,

[given by Elliott and Stock (1992) equation 2.4] is

)

£, o= 81Tl 4 (1-62)%2
where 79 is the local to unity distribution of the t statistic testing @ =« with ¢=T(a-1) and
deterministics d, included in the regression, z is again a normal random variable
asymptotically independant of 72. When c=0, this is identical to equation (3) given above,

and when c is large and negative, this collapses to the case of |a| <1 and fixed [Phillips

(1987) shows this for 7.].

This approximate distribution tends to work well in finite samples. For the example given
above in Figure 1, the corresponding value of c=T(a-1)=100*(0.95-1)=-5. The asymptotic
local to unity distribution for c=-5 is also graphed on Figure 1, being the distribution shown
by the short dashed line. Clearly, this is an excellent approximation to the estimated

empirical distribution, which lies almost entirely on the local to unity asymptotic distribution.

10
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This point is also made in Table 1, which examines the performance of the local to unity and
I(0) [i.e. N(0,1)] distributions for a range of values of « between zero and one when 100
observations are available. The model is identical to that in equation (4) above, except that
it is examined for a range of values for « and 6. Three panels are presented, for § = 0.2,
0.5, and 0.8. Ineach panel the upper and lower 2.5% critical values are employed for each
distribution to evaluate the reported empirical upper and lower rejection rates for both the
I(0) and local to unity characterizations of the limiting distribution. The chief features of
the breakdown of the N(0,1) distribution are seen in each panel, with the extent of the
breakdown increasing as 6 moves closer to one (from equation (5) we can see that the weight
given to the non standard part of the distribution is increasing in §, there will be no
breakdown when §=0 as the weight is zero here). For values of « close to zero, the normal
distribution is a good guide to the limiting behavior of t,. For « closer to one, however,
use of the asymptotic normal critical values results in overrejection in the lower tail and
underrejection in the upper tail. This is to be expected from Figure 1. The extent of this
shift in mass is substantial; for §=0.2, which represents a very mild relationship between
the two residuals, in the limit as a1 the standard normal distribution will reject 5% of the
time in the lower tail and almost never in the upper tail. For §=0.8, this lower tail rejection
level is 21% (Section 5 in Chapter 3 and the empirical results of Chapter 4 give resuits on
this parameter for applications with real data, this parameter is generally non zero reflecting

the general interdependence of economic data).

11
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Table 1:Local to I(1) vs I(0) distribution approximations

1(0) loc to unity
alpha lower upper lower upper

delta = 0.200

0.000 0.029 0.026 0.025 0.033
0.100 0.030 0.026 0.025 0.033
0.200 0.029 0.025 0.026 0.033
0.300 0.030  0.024 0.026 0.035
0.400 0.031 0.024 0.028 0.032
0.500 0.031 0.023 0.026 0.035
0.600 0.031 0.023 0.026 0.032
0.700 0.032 0.023 0.027 0.033
0.800 0.033 0.022 0.029 0.030
0.900 0.035 0.020 0.028 0.033
1.000 0.049 0.011 0.025 0.028

delta = 0.500

0.000 0.028 0.026 0.022 0.035
0.100 0.029 0.024 0.023 0.034
0.200 0.031 0.024 0.023 0.033
0.300 0.033 0.024 0.022 0.032
0.400 0.034 0.022 0.022 0.033
0.500 0.035 0.021 0.025 0.033
0.600 0.037 0.019 0.027 0.033
0.700 0.041 0.017 0.027 0.032
0.800 0.045 0.015 0.029 0.034
0.900 0.050 0.012 0.028 0.032
1.000 0.108 0.003 0.023 0.027

delta = 0.800

0.000 0.030 0.023 0.016 0.036
0.100 0.030 0.022 0.018 0.035
0.200 0.033 0.022 0.018 0.035
0.300 0.033 0.020 0.019 0.035
0.400 0.036 0.019 0.020 0.034
0.500 0.038 0.017 0.020 0.034
0.600 0.041 0.016 0.022 0.033
0.700 0.046 0.013 0.025 0.031
0.800 0.054 0.010 0.025 0.030
0.900 0.069 0.008 0.030 0.034
1.000 0.208 0.001 0.028 0.027

Notes: Critical values for local to unity results were calculated from Monte Carlo experiments with
T=1000 and 5000 replications. The results reported are rejection rates from a Monte Carlo with
T=100 and 10000 replications. Critical values for the I(0) case are from standard normal tables.

12
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In contrast, the local to unity distribution has quite good size properties for « close to one.
As o0, this breaks down as « is quite far from 1. In the lower tail, for large 4, the local
to unity asymptotic distribution tends to underreject. However, this underrejection is not
really apparent even for §=0.5. In the upper tail, the tendency is to overreject, a tendency
which holds for reasonably large values of «. It is interesting, though, to note that this

tendency to over-reject is small.

Recall that the intuition for the breakdown of N(0,1) asymptotics as an approximation of
small sample distributions suggested that there would be a range over « where the
asymptotic theory approximation would be poor. The local to unity asymptotics make this
comment precise. The range of breakdown for « is a region ¢/T, and this region disappears
at rate T. Note also that one alternative approach to using local to unity asymptotics would
be to examine small sample distributions directly. This approach is valid but extremely
problematic; the small sample distributions would depend on distributional assumptions® and
would be different for each possible convolution of nuisance parameters in the dynamics of
$(L). As yet few attempts to do this have been made. The local to unity approximation,
on the other hand, is valid under a wide range of distributional assumptions and nuisance

parameters in ®(L) are easily handled.

In most economic applications, we expect « to be fairly large. This is follows empirically

5 Guido Imbens has pointed out that the similar asymptotic results for different
distributions suggests that the small sample results would also be similar across different
distributional assumptions.

13
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from results such as Nelson and Plosser (1982), who fail to reject =1 for many US
macroeconomic series, and from Stock (1991a), who inverts the statistic used for the Nelson
and Plosser (1982) statistics to obtain confidence intervals on «, and shows that they exclude
small values for «. Even the Bayesian results of Dejong and Whiteman (1991) suggest that
these roots are fairly large. Results in Elliott, Rothenberg and Stock (1992) show that the
tests used in the study by Nelson and Plosser have asymptotic power equal to one (when the
data has been detrended) testing the alternative of c=-30 against the null hypothesis of a unit
root. This suggests that tests of a=0.7 against the null of one with 100 observations would
have very high power. This suggests that the relevant area, as regards values of «, to
examine is relatively close to one, an area where the local to unity approximation appears
to work well. Thus, this thesis concerns itself mostly with roots large and close to one, and
employs the approximation of local to uniiy asymptotic results to examine the large sample
behavior of the statistics. This solves to a great extent the second problem confronted by

classical researchers®.

If we accept that the classical finite sample distribution of t is well approximated by the
local to unity distribution, then the asymptotic distribution depends on the fixed local to unity
parameter c. As before, the limit distribution of the usually estimated t statistic depends on
this nuisance parameter, and so estimation of an exact asymptotic distribution requires
knowledge of a, or more precisely T(x-1). I have indicated above that this is exactly

information which is unknown to the applied researcher, in the sense that economic theory

¢ A third potential problem is that 8 is unknown. Lemma 2 of Chapter 3 of this thesis
shows that in the range we consider, this nuisance parameter is consistently estimable and
so tests invariant to this parameter can be easily constructed.

14
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rarely restricts this parameter to a value.

To see this point a different way, it is perhaps better to consider the approach taken by the
cointegration literature for solving for a distribution for y. Consider the case where
&(L)=1, i.e. there are no dynamics so that v,=¢, Following the algebra in section 3 of
Chapter 3 of this thesis (which finds the seemingly unrelated least squares transformation

of equation 1), it can be seen that the second equation in (1) can be rewritten as

. 6)
Yo = dy, + YY,, + @(1-aL)y, + 7,

where E[p]=L,L,, ! and E[n,” ¢,]=0. This result is shown for the case of a=1 in Phillips
(1990) and Stock and Watson (1993), where both assume normality of ¢, to factor the
likelihood and then note that the normality assumption is not required. The cointegration
result these authors examined is when a=1, this transformation underlies the method of
single equation (limited information) cointegration estimation of . The purpose of
introducing this framework is to examine the estimator of vy and the information required to

undertake hypothesis testing on v independent of knowledge of «.

It is clear that were o known exactly, then the distribution of the t statistic on vy =+y,, denoted
as t' (where the t superscript here indicates that v is estimated from the transformed
equation (6) above), has an asymptotic normal distribution. This follows from the
orthogonality of the regressors and the residual of equation (6) [see the appendix of Chapter
3 for a proof of this under general conditions]. In the absence of the exactly known value

of «, a number of possibilities are available. If we were able to find some way of choosing
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o so that it did not affect the limiting distribution of t,, then we would be able to construct

a test of the null hypothesis with size controlled for unknown a.

The results of Theorem 2 of Chapter 3 in this thesis show that setting a=1 in the regression

given by equation (6) results in the distribution

4t 1 )
1=z - c8(1-8%) %( ‘[Jf(s)zds)’z

where § is as above, £, ,=L,,-L,,; ' L,,2, z is a standard normal variable independent of J4(s),
and Jis) is a detrended diffusion (Ornstein Uhlenbeck) process, where
dJé(s) =cJi(s)ds +dW(s), and W*(s) is a standard Brownian Motion proce. - detrended by d,,.
The distribution in (7) depends on the value of c=T(«-1) through two channels; directly as

is seen by c entering the equation and indirectly as the diffusion process is indexed by c.

If instead we replace « in equation (6) by «, the OLS estimate of o, then t, has the

distribution given by

. 1 ®
t, =2z - cé(1-87) "!(J’ch(-s')zds)‘z + 5(1'52)7:&“)

where 7..," is the distribution of the test statistic testing @=1 when a=1+c/T (see Phillips
(1987) for the derivation of this distribution) detrended by d,,. This distribution also depends

on T(a-1).

In each case, we need to know the value of T(a-1) to be able to choose the correct

distribution for inference, so neither of these approaches provide useful tests. To do this
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in the absence of direct knowledge of «, it can be seen that for invariant inference we

require that ¢ be consistently estimable. Otherwise, this nuisance parameter affects the

distribution of the t statistics for y=-+,.

A corrolory to the result that t tests constructed by testing o =+, are not invariant to « is that
in those cases where the value of « is given by theory, then the above tests (whether
transformed in some way or not) are really testing the joint null that this information on «
is correct and the stated null that y=-y, The tests will reject in both the directions of a# o
and +y#+, (see Chapter 3 section 7 for discussion of this with reference to cointegration
estimation, and Chapter 4 for this in reference to an empirical example). This suggests that
if the null hypothesis can be written as a joint test over both « and 1y, then inference can

proceed. Section 4 of Chapter 4 gives such an example.

As the potential for construction of a test independant of knowledge of « depends on the
information we can learn about this nuisance parameter from the theory, we turn to inference

over « in the next section.

III Cliassical Inference on «

Given the dependance of the asymptotic distribution of subsequent hypothesis tests (such as
tests on + in the model here) on the size of the largest root in y,,, there has been substantial
interest in tests of a«=1. A comprehensive and current review of the history and

performance of these tests, including a discussion of other reasons why these tests are of
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interest, is given in Stock (1994). This section will examine first the role tests for a unit
root, and more generally inference on «, can take in determining the asymptotic distribution
relevant for the second stage. Secondly this section will examine optimal tests for « in the
Neyman Pearson sense, and the potential use of such optimal tests in the second stage. Also
discussed are possible improvements to these optimal tests by inclusion of covariates [Hansen

(1993)]".

If one were to disregard argument of the previous section, that the ’knife edge’ result that
the asymptotic distribution of  and its associated t statistic depends on only whether a=1
or is fixed and less than one in absolute value, then the problem of second stage inference
would only require that the first stage consistently select the I(1) (e=1) or I(0) (|a] <1)
models. This type of ’selection’ of the correct asymptotics or transformations to obtain
second stage asymptotics appears to be behind two-stage testing rules where tests of a unit
root leads to use of I(1) asymptotic theory and related transformations of the model if the
researcher fails to reject and 1(0) asymptotic theory if the researcher rejects the unit root,
such as suggested in the "two step’ procedure of Engle and Granger (1987) for cointegration
estimation (Appendix 1 shows that such pretesting procedures are the preferred approach in
empirical work). In this case, if the pretest is consistent in the sense that the correct
distribution is selected asymptotically (and the ’knife-edge’ asymptotics were correct), then

this strategy would produce consistent tests of hypotheses over -y in the second stage.

7 The optimal tests are optimal when only the data {y,} is observed. Thus, additional
covariates represents extra information outside this framework, and enables potentially
greater pOwer in unit root tests.
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Elliott and Stock (1992) show that standard tests for a unit root with constant critical values,
such as the Dickey and Fuller (1979) 7 test, are not consistent pretests due to the asymptotic
correlation between the pretest and the second stage test. In order for these tests to
consistently classify a series as I(1) or I(0), we require that type I and type II errors in the
first stage go to zero. Two methods which achieve this are using standard tests with critical
values which vary with the number of observations, or by using a Bayesian classification
technique [e.g. Phillips and Ploberger (1991), Stock (1992), Elliott and Stock (1992)], which

achieves the same effect.

Whilst these work in the ’knife edge’ case where it is presumed that the asymptotic
distribution for « fixed and close to one yields normal asymptotics for t,, it was shown in
the previous section that such asymptotics provide a poor guide to the distribution of t, in
conventional sample sizes. If one examines the local to unity sequence, then the procedures
of the previous paragraph will asymptotically misclassify stationary variables best described
by local to unity sequences as being I(1), so the procedures break down [Elliott and Stock
(1992), Theorem 3]. Campbell and Perron (1991), in a paper aimed at guiding empirical
practice in macroeconomics, argue that this misclassification, or in their terms low power
against close alternatives, is potentially an advantage for second stage inference as they
suggest using I(1) asymptotics may be better for models close to this model. The
smoothness of the small sample distribution may suggest that this is true, but in either case
size is not controlled by such ’accidents’. This is made clear in chapter 3, where pretending
that close to nonstationary variables are nonstationary leads to potentially very large size

distortions in hypothesis tests.
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Restricting attention once again to values of « and sample sizes which are well approximated
by the local to unity model, it is clear from the previous section that in the absence of
knowledge of a, we require consistent estimation of T(a-1). Such consistent estimation
would then enable a correction that would enable the removal of the non standard term from
equations (7) or (8) above, enabling asymptotic normal inference over the range for . If
this is not available, then T(a-1) converging to a distribution would enable the weaker
possibility of placing probability statements cn c (e.g. confidence intervals) to restrict the

range of this nuisance parameter.

When no additional stationary covariates are available [e.g. when <y is unknown in equation

(1)], we can write the single equation model for y,, as

Yie = dye * Uy, ®
where u;, = au, ; + v,

where {d,,} are deterministic components and v,, is 1(0).

For this model, Dickey and Fuller (1979) show that the OLS estimate of & in this
autoregression when a=1 (when v,, is iid) is consistent for « at the rate T, i.e. T(a-1)
converges to some distribution. Cavanagh (1985), Phillips (1987), Chan and Wei (1988)
extend this result for all a=1+c/T, deriving the local to unity distributions for T(a-1).
Alternative estimators, such as the symmetric least squares estimate of «, also converge at
rate T [Dickey, Hasza and Fuller (1984)]. No estimates of & converge at the rate required

to consistently select the correct local to unity distribution, a rate faster than T for all of the
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relevant parameter space®. Thus, consistent estimation of T(a-1) is not available in the

classical framework, so this possibility is ruled out®.

This suggests that the most we can learn from the data about T(a-1) is of the form of
asymptotic probability statements on this quantity, i.e. confidence intervals which will
contain the true value for o with a known probability. The construction of confidence
intervals for this quantity is examined and made operational in Stock (1991a), Andrews
(1993) and Kiviet and Phillips (1992). Any test can be used to construct a confidence
interval by inverting the test [Kendall and Stuart (1937); see Stock (1991a) for a discussion
and application to the Dickey Fuller 7 statistic]. Currently, the only results for the general
model (general serial correlation) available are for the inversion of the Dickey-Fuller 7 test
and the Sargan and Bhargava (1983) tests, derived in Stock (1991a). Stock (1991a) shows
that the 7 test was preferred due to superior small sample performance. This raises the issue

of how to select amongst different potential confidence intervals.

To obtain as much information on the range of « as possible from the observed data y,,, we
require the construction of the shortest interval possible!®. When a uniformly most

powerful (UMP) unbiased test exists, this can be inverted to yield a uniformly most accurate

® Hence the non standard distribution in equation (8)

® The problem is that ¢ has no real meaning, but is a device for obtaining an
approximate limiting distribution, so consistant estimates of this will not be available.

10 pratt (1961) discusses optimality concepts for confidence intervals, showing that when
there exists some shortest unbiased confidence interval, then this is also optimal from the
point of view of minimizing the probability that the confidence interval includes false values
[as proposed by Neyman (1937)].
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(UMA) confidence interval. Elliott, Rothenberg and Stock (1992) [ERS] show that for the
unit root test, no such UMP test exists, thus the UMA intervai can not be obtained in this
way. This is also the case for null hypotheses which are local to one. ERS does obtain tests
which are optimal for a given alternative (a point optimal test) which is shown to be
approximately UMP in the sense that it lies almost on top of the power curve for thé test of
a unit root, not only for the fixed alternative used in it’s derivation but also for the sequence
of relevant alternatives. Whilst no optimality theory suggests that inverting such a statistic
will provide optimal confidence intervals, the higher power of the statistics derived in
ERS is suggestive of a possible result that confidence intervals constructed by inverting these
statistics will be more accurate than inverting tests with lower power (as they would have

a higher probability of excluding false values). The construction of such tests is currently

under investigation.

In employing the results from Elliott, Rothenberg and Stock (1992), it may be considered
to strong to assume that the Eu,,? is finite. The empirical results in Elliott, Rothenberg and
Stock (1992) show that relaxing this assumption to the assumption that u,, is drawn from its
unconditional distribution under the alternative affects the power of the test in Monte Carlo
experiments (this is a well known feature of unit root tests in general - see the discussion
in Chapter 2, section 2). The second chapter of this thesis examines this issue and rederives
the results of ERS for this case, deriving almost UMP tests for the null of «=1. The results

of this paper show that the optimal power of such tests is lower than in the conditional case

1T was unable to find any optimality results for tests and confidence intervals when the
test is not invariant to a nuisance parameter.
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of ERS (to be expected as less information is being assumed as known). In general,
however, the loss from employing these tests instead of those in ERS in the conditional case
is large relative to the loss of employing the ERS tests over the Chapter 2 tests when u,, is
drawn from its unconditional distribution!?2. The relative performance of confidence

intervals constructed from inverting these tests, however, remains as yet uninvestigated.

Thus the optimal results show that for a variety of assumptions on the initial condition, the
best we can do is place an asymptotic distribution on T(a-1), which we denote as C.
Whether or not this is the optimal confidence interval in the sense that it is shortest cannot
be derived from theory, and so the best we can do is examine this possibility empirically

against other confidence intervals.

A recent paper by Hansen (1993) shows that additional stationary data correlated with vy, in
the long run can be employed in tests for a unit root increasing the power of these tests.
Whilst the general assumption here is that the model is as in equation (1), extensions of the
model in the direction of adding more equations may enable higher power than that obtained
by the ’optimal’ tests, which are optimal in the absence of such extra information. This
research is new and no applications or attempts to invert the statistic for a confidence

interval have been undertaken at this time.

12 One could alternatively condition on this initial condition, resulting in the loss of any
power that could be derived from observing the first observation. This is at great cost in
power in the small samples generally available to researchers.
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IV Classical Inference on y

The result that it is possible to place an asymptotic confidence interval on T(a-1) does not
in itself yield a procedure for second stage inference. This section will present some
methods for classical inference on vy, taken from the results of Cavanagh, Elliott and Stock
(1993) [CES]. The first method discussed does not use data on y,, to help with inference,

whilst the others use the results described in the previous section.

Too see how such a confidence interval for « may be useful for second stage inference,
consider the sensitivity of inferences using t, to values of « (the construction of which is the
same for all «). For some «, this test either rejects or it does not. This estimate of t, can
be examined for a range of plausible values for «, and if the hypothesis is rejected for any
of these «, then the null hypothesis is rejected (the rejection of the null hypothesis at some
« and not others suggests that any rejection is fragile and depends on knowledge of ). This
method constructs a confidence interval invariant to the nuisance parameter by choosing one
wide enough to satisfy every possible value for this nuisance parameter'*. This provides
a maximum width confidence interval, as it assumes no knowledge of the nuisance
parameter. To achieve a shorter interval, we require some method to limit the range of a.
Clearly, confidence intervals on the first stage provide some way to obtain a reduction in the

range over « in a strict probability sense.

13 The actual choice of distributions from which the confidence interval is constructed
depends on §, and the estimate of this parameter is affected by « in small samples but not
asymptotically.
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Ultimately, we wish to place a classical confidence interval on the parameter of interest, 7.

The usual frequentist statement for a 100(1-a)% confidence interval for -y can be written

- (10)
PLy0) sy sy®)]2(-a) Ve

where ~y(y) and ¥(y) are lower and upper bounds for + as a function of the data y,, (1-a) is
the confidence level, and this probability statement must hold for the entire relevant range
of a. To construct such an irterval that holds for all « in the relevant range, we require a
test for y=+v, which has size not larger than a for all relevant values of the nuisance

parameter ««. The statistic we will examine here is t,, presented in section 2 above.

If we regard the relevant range for « to be such that -40 <c <10, then percentiles of t, can
be calculated using Monte Carlo methods. Percentiles of t, for a range of values for § are
reported in Figure 3 in CES. As these distributions vary with «, without any extra
information on the range for «, then a 90% confidence interval can be constructed by taking
the minimum (over c) value of the Sth percentile and the maximum value of the 95th
percentile. For any fixed value for « in this range, then the probability statement in
equation (10) holds; this is simply the procedure above. The confidence interval for y can
then be calculated in the usual way' using these alternative critical values; this is derived

in CES and called the sup-bound interval.

This interval is quite conservative, in the sense that for any fixed value of «, the method will

 je. the confidence interval limits are [y - dse(¥),y +_d.se(y)], where se(y) is
calculated according to the discussion following equation (2), and d, and d, are the upper and
lower critical values of the test derived as in the text.
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fail to reject estimates of t, that would be rejected if o were known. For example, if T(a-
1)=-10 and 6=0.5 (and d,, is a constant), the (symmetric) sup-bound critical values are
30,5=1.96 and d, s=-2.77, whereas if o were known, then the asymptotic upper and lower
critical values from figure 2 are 1.52 and -2.44 respectively. Note, however, that this error
from not knowing « is different to those mentioned in previous sections in that size of the
test is below stated size rather than above it (this is with probability one, as the o known
intervals all lie inside the sup bound interval by construction). Thus, Type I error is
controlled to be less than the stated level as is desired in classical inference, and the

probability statement given in equation (10) above holds for all «.

This procedure, however, ignores any information that can be obtained from the data on «.
The previous section shows that the best we can do is put a confidence interval on this
nuisance parameter. CES shows that this information on « can be employed to aid second
stage inference using a Bonferroni approach. As discussed in the previous section, tests for
a=1 can be inverted to form confidence intervals on «. Restricting attention to « inside a
first stage confidence bound of level (1-a,), the second stage critical values can be
constructed by examining the percentiles of t, that would result in a second stage level (1-a,)
confidence interval. The outer most extreme points of these percentiles give conservative
critical values for this restricted range. The Bonferroni inequality then tells us that the size
of the Bonferroni test is no greater than a=a,+a,. Using these critical values results in a
classical confidence interval for iy which satisfies equation (10) above, although the results
of CES show that this is still a quite conservative test. Results show that whilst this test

loses power over the o known case, these power losses are not too extreme. In any case,
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the « known interval is not feasible.

The actual approach used in CES was to employ the results of Stock (1991) and invert the
Dickey-Fuller t statistic to obtain a first stage confidence interval. From the graph of the
percentiles of the t, statistic in figure 2, it is clear that we wish to limit the range over which
o varies as much as possible. The Bonferroni approach allows us to do this directly by
increasing a,, but this comes at a cost of decreasing a,, thus widening the second stage
critical bounds. Results from the previous section suggest that more accurate first stage
intervals may be constructed by inverting tests of a=1 that are closer to being UMP, or at

least more powerful than the Dickey Fuller test.

CES also examines other classical approaches using the joint test over « and v, although this

paper finds that the Bonnferroni and Sup-Bounds tests perform best in terms of power.

The only other regression based approach to this problem is contained in extensions of the
fully modified regression approach introduced by Phillips and Hansen (1989). These
extensions are found in Kitamura and Phillips (1992) and Phillips (1993a,1993b). These
papers extend the procedure to models where the order of the cointegrating space is
unknown, without the loss of unbiasedness and chi-square inference. They require the
construction of an orthogonal dependant variable vector, such as (1-aL) in equation (6)
above, constructed in the method of Phillips and Hansen (1989), i.e. they impose that the
largest root of the regressor is one. This term is entered into the regression with a weight

estimated non parametrically. In the case of Phillips (1993a), this requires using the first
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difference of all of the data and relying on the result that if y,, were truly stationary, then
its difference is I(-1) and is op(1l), and the non parametric correction when the data is
stationary disappears asymptotically and so inclusion of this term does not affect the
results’. When « is considered fixed (whether equal to one or less than one), then this
results in chi-square inference - in the method of Phillips and Hansen if the data is I(1) or
by usual stationary CLT results if the data is I(0). Thus, this method treats variables with
their largest root equal to o where « is close to one as stationary variables. The central
result from local to unity asymptotics is that for such values of ¢, the asymptotic distribution
resulting from considering large values of « as fixed is not a good guide to the types of
distributions seen with reasonable amounts of data, but instead the distribution resulting from
considering ¢ fixed does result in an asymptotic distribution which appears relevant. This
suggests that for persistant data, inference using these methods will also result in size
distortions. The extent to which this bias appears in practice for these techniques has not

yet been investigated.

V Other Approaches to Inference on y

The above discussion, and the focus of this thesis, has limited itself to classical (frequentist)
testing of the hypothesis of interest. This is indeed the approach apparently preferred by the

majority of researchers employing time series theory, as is seen by noting that an extremely

15 To achieve this, very specific controls are required to be placed on the speed at which
covariances are added in the construction of the non parametric estimates of the spectral
density of the residuals at frequency zero.
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large proportion of published papers use purely frequentist methods. This is not to say that
such methods are thus most relevant for inferences on v, but it does appear that a complete
understanding of the classical properties of such tests in economically relevant theoretical
models should be a high priority if the econometrician is to guide empirical practice. Of
course, it may be that other methods solve the problems outlined above in a way that is
acceptable to researchers, thus making the examination of these alternate methods also
extremely interesting. This section examines three such alternative approaches with a view
to assessing their applicability to this problem: these are non parametric methods,

bootstrapping, and Bayesian methods.

Non-Parametric Approaches

Campbell and Dufour (1991,1993) have examined hypothesis testing on + in the second
equation in (1), particularly as regards orthogonality tests, using Wilcoxen type non
parametric (rank and signed-rank) statistics. These statistics are based around quantities such

as

l (11)
Sg = Y ulGy - YoY15-1) Yie-1]

t=1
where u[z]=0 if z<0 and one otherwise. If y=1,, then under the extra conditions that y,,
and y,, are mean zero and there is no serial correlation in (y,~ygy,) then this has an exact
binomial distribution [Campbell and Dufour (1993), Proposition 1]. This distribution is
derived and stated in Campbell and Dufour (1993). They go on to examine signed rank tests

and other similar quantities as in equation (11). They show that these tests have excellent
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small sample properties in Monte Carlo experiments with a range of assumptions on the

distribution of the residuals v,,.

The major caveats to use of these statistics is that the requirements of mean zero variables
and no serial correlation are binding. The theoretical results rely on u[.]=1 having a
probability of occurring of one half for each observation, however with serial correlation or
non mean zero data this will not be the case. Serial correlation leads to ’runs’ of ones and
zeros, as quantities such as those in the argument of u[.] in equation (11) stay away from
the true zero mean for a number of periods. This probability will also be incorrect if the
quantity in the argument does not have exactly mean zero, as would be the case when the

data is not mean zero and the true means are unknown.

To get around the problem of serial correlation, the authors propose splitting up the sample.
For example, if the residuals are known a priori to follow an MA(1) process, then taking
every second observation would result in a serially uncorrelated sample. The problems with
this are twofold. Firstly, even in this simple case, half of the observations are lost, which
will result in extreme power losses in the types of samples typically found in
macroeconomics and finance. Secondly, it is rare to know the order of serial correlation of

the residuals, making such a fix unoperational.

This test can be successfully employed in cases where the joint null of -y=-, and no serial
correlation is of interest to the applied researcher, as it will have power in both directions.

In most macroeconomic and finance applications, however, we are not really interested in
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the null of no serial correlation. The results of Campbell and Dufour do suggest that non
parametric approaches to this problem warrant further investigation - their approach deals
successfully with 6 non zero and obtains exact finite sample results for a wide range of

values of « and distributional assumptions on v,.

Bootstrap Approaches

There has apparently been no work so far in evaluating the possibility that Efrons’ (1979)
bootstrap can be successfully applied to this general problem of estimation and testing
hypotheses over . The discussion here will examine the apparent lack of success of the
bootstrap in a simpler problem, that of inference on the first stage estimation of the

autoregression, and draw conclusions from this for the problem at hand.

In the special case where =1 and no serial correlation in the residuals v,, (i.e. v, =v,),
then the model in equation (1) with s=1 is such that y=« and both equations are identical.
In this case, with the additional assumption of d;;=0, a number of papers have examined the
application of the bootstrap to estimation of «. For fixed || <1, Bose (1988) shows that
the standard bootstrap estimator of ¢ is asymptotically valid, in that it replicates the correct
asymptotic normal distribution. Raynor (1990) presents Monte Carlo experiments which
correspond to these results. Basawa et al (1989) show the same result for fixed |a| >1, i.e.
the explosive case. Basawa et al (1991) consider the case of =1, and show that the
parametric bootstrap distribution (where ¢,,~N(0,1), and the bootstrap samples for ¢, are

drawn from a standard normal distribution) is not asymptotically equivalent to the true
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distribution. They consider the correct asymptotic distribution 7,, and show that the
asymptotic distribution of the t test testing the bootstrap estimate of « is not equivalent to

Tas

The intuition for this result follows from the results on estimating « in section 3 above. The
bootstrap estimates of y,,, denoted by y,,’, are estimated by cumulating by the equation y,,”
= ay. + €, where €, is constructed from draws (with replacement) from the estimated
errors of the process. But from the results of the local to unity literature for the distribution
of 7, [Cavanagh (1985), Phillips (1987), Chan and Wei (1987)], we know that the limiting
behavior for the t statistic here depends on the actual value o used to cumulate the bootstrap
residuals to obtain the bootstrap data y,,. Thus, the bootstrap considered here cannot
replicate the first order asymptotics for 7,. Basawa et al (1991) indicate that their result
holds for all estimators of & which converge at rate T (hence this result covers the local to

unity case as well).

Ferreti and Romo (1993) present theoretical and empirical results which show that the
bootstrap can, however, be employed to test the unit root hypothesis. They make two
changes to the bootstrap design considered above. First, upon obtaining €,,” as above, they
demean the residuals. Second, they construct y,,” under the null hypothesis of x=1, i.e.
they use the recursion y,,” = y,.," + €, . From the intuition above, this second design
change circumvents at least part of the problems involved with employing the bootstrap.
They present Monte Carlo results which indicate that this bootstrap test has similar size

properties in finite samples as the Dickey-Fuller test, and possibly enable a slight gain in
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power over these tests (this may be Monte Carlo error).

Some conclusions for the potential of applying the bootstrap in examining t, can be drawn
from these results. If the asymptotic theory for || <1 (or >1) were relevant, then the
bootstrap could potentially be applied as it works in the first stage. However, this is the
case where it is not needed, as first order asymptotics work well. Potentially, it would allow
some finite sample gains, as it does in the first order AR case [Raynor (1990)]. For the
problem at hand, however, we are restricted to the range where estimates for o converge
at rate T. Hence, if o« were known (say we had a null hypothesis for «), then the results
of Ferreti and Romo (1993) suggest that the bootstrap may be applicable. Again, if @ were
known, the first order asymptotic theory for t, is known so there is no real need for the
bootstrap. In the case of o unknown, it follows fairly directly from the resuits of Basawa
et al (1991) that the bootstrap will not help: bootstrapped data must be cumulated using the

estimated value o rather than the correct « so the bootstrap would be invalid.

Bayesian Methods

As in the case of the bootstrap approach, the Bayesian methods have apparently not been
applied to these particular models, although they have been applied to the first stage (unit
root) problem by itself (which as noted above, is a special case of the second stage). Unlike
the bootstrap, Bayes methods do, however, have a justified (from the Bayesian point of
view) solution to this problem which would at one level simply entail placing a prior

distribution over the nuisance parameters of the model (which is to some extent implicitly
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done in the classical methods by restricting attention to values of o where the local to unity
specification applies). In fact, Bayes methods effectively would circumvent the problem by
conditioning directly on the y,, sequence that happened to be observed. As is the usual case
for the differing approaches of classical and Bayesian methods, the differing techniques
reflect differing views on probability and the experiment being undertaken [e.g. see
Rothenberg (1983)]. No attempt will be made here to examine these types of arguments,
this section will review what is known about Bayesian solutions in the types of models under
investigation, the implications results have for empirical modelling, and some conjectures
as to how to provide more information on these points. These conjectures are borne out by

a small Monte Carlo experiment.

Whilst no literature has directly considered Bayesian inference in models such as on + in
equation (1), two sets of literature are relevant. Firstly, in the case of tests for a unit root,
a number of papers have examined Bayesian solutions [Dejong and Whiteman (1991),
Phillips (1991), Sims and Uhlig (1991), Uhlig (1992)]. The general results from this
literature are that the prior distribution chosen matters asymptotically, that different

uninformative’'

priors over « yield different asymptotic results, and that these results are
different from those obtained using classical inference. In particular, the unit root

hypothesis is rejected far more often in Bayesian analysis.

Phillips (1991) argues that the flat priors usually employed by the Bayesians are not

16 As the prior matters asymptotically for the posterior, different priors attempting to be
uninformative over the space for « result in different posterior distributions for @ even in
large samples, and so are actually not uninformative in practice.
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uninformative in autoregresssions and that they bias the results towards rejecting a unit root
model. He argues that Jeffreys priors are more relevant, and that these give results closer
to the classical result. Kim and Maddala (1991) use Monte Carlo methods to show that the
Jeffreys prior gives high weight to roots close to and above unity. Uhlig (1992) shows that
to a great extent the differing results over different priors is due to the weight assigned by
the prior on explosive roots; if the parameter space is restricted to disallow explosive results
then posterior distributions are more similar over different priors. Sims and Uhlig (1991)
employ flat priors and show that conditioning on e, that the marginal distribution for o has
a normal distribution, thus p values for the unit root hypothesis will be larger for Bayesian

solutions.

Secondly, there has been much work examining Bayesian vector autoregressions (BVAR)
of the form y, = a(L)y,, + b(L)x,, for use in forecasting the US macroeconomy [e.g.
Litterman (1986)], usually under the mean restrictions (smoothness priors) of a(1)=1 and
b(L)=0. Different mean restrictions would replicate equation (1) with s=1, so this literature
is related to the question here. The focus of these studies has not been directed at the
stochastic properties of the explanatory variables. All efforts regarding the BVAR have
focussed on estimation rather than inference over the parameter space, so no lessons are

available.

From the unit root results, where the classical results involve non standard distributions
whilst the Bayesian ones with uniform priors do not, and the result that t, has a non standard

distribution driven by the size of «, it is conjectured that the Bayesian and classical results
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for inference over 4 will also differ. This result would suggest that conclusions drawn
depend on the thought experiment being undertaken -a problem for which no ready answer

is available when there is no general agreement as to the correct experiment,.

The extent of the difference between classical and Bayesian examinations of -y would be
expected to be smaller than that found in the examination of a unit root. This follows from
the intuition that the unit root case is and extreme bound on the model considered here
(where in the unit root case 6=1). A Monte Carlo experiment can be employed to examine
the extent of the difference. Here, the model in equation (4) is examined, with the
additional assumption of iid normal errors. The model can be rewritten so that the residuals
are orthogonal to the regressors so the second equation becomes that in (6). To calculate
the posterior distribution for v, we require prior distributions over the parameters. Here,
rewrite the model as
Y =4, *ay,, + €, (12)
Yoo = dy * ByYye * BoYye * M,

where ¢ = B, and ¥ = B, + ¢. Uniform priors were placed over («, 8)’ [where 8=(8,
B8,)’], with the prior on o bounded between 0.6 and 1.1. The orthogonality of the error

terms was treated as known!’.

The posterior distribution for -y can be estimated by Monte Carlo. For any realised dataset

¥, the posterior distribution for & (without the trucation) is N(e, var(e)). The truncation

17 For the analytic results for the posterior distributions, the variances of the errors were
treated as known, although in the simulations they were estimated. This is likely to have
only a small effect on the results.
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affects this by removing probability mass in this distribution outside of the truncation points.
The posterior distibution for 8 is N(8, var(8)), where the two normal distributions are
independant as the residuals for each equation are independant. From these distributions,
the posterior distribution for <y can be constructed by the formula relating vy to (« 8) and

numerical reaslisations of the normal distributions.

The results can be evaluated from a frequentist perspective, or alternatively, can be used to
examine frequentist results from a Bayesian perspective. The equal tailed 95% Bayesian
confidence interval can be calculated from the simulated posterior distribution. For
interpretation from a frequentist perspective, we would desire such an interval to contain the
true value for iy for 95% of datasets constructed according to the true model. In 5000

replications, the Bayesian confidence interval calculated as above!® had a coverage rate of

89%%*.

Alternatively, one could examine the classical confidence intervals from a Bayesian
perspective. This would involve examination of the posterior for iy which is covered by the
frequentist confidence interval. For each dataset, (here replication in the Monte Carlo), the

posterior probability mass contained in the classical confidence interval can be calculated.

18 Roughly 5000 simulations of the normal distributions were employed to compute the
posterior distribution for v.

1% The bounding of the prior on « had little effect here. For the model examined the
coverage rate without bounds on o was 88%. These coverage rates are sensitive to the
model examined. For =1 and §=0.99, a model close to the unit root case, the coverage
rate of the Bayesian confidence interval was 69%. In this model, the posterior coverage of
the Bonferroni confidence interval was lower in the sense that on more occasions this
coverage was less than 95%.
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The frequencies of various coverage rates over many datasets can then be reported. Using
the Bonferroni confidence interval described in section 4 above®, this result is reported in
Figure 2. Around 80% of the Bonferroni confidence intervals contained over 95% of the
posterior probability of ; almost half of the coverages are very close to one. The smallest

posterior coverage of the 5000 replications was over 80%.

The interpretation of these results is unclear. Given the flat prior, there is a difference
between Bayesian and frequentist results. For some datasets, different conclusions will be
drawn for y. This was as conjectured above. The coverage rate of the Bayesian confidence
interval for + is distorted less than the Bayesian confidence interval for . With a time trend
included in the specification, Stock (1991b) reports that the Sims and Uhlig (1991) 95%
Bayesian confidence interval for « contains the true a 39% of the time when a=1 (they
employ similar priors as the Monte Carlo experiment above). With the time trend removed,

this coverage rate becomes 78%.

2 The confidence interval is calculated with a 1% first stage size and 4% second stage
size, yeilding a level 95% confidence interval.
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Figure 2: Posterior Coverage of the Bonferroni Confidence Interval,

2400

# Frequency
800 1200 1600 2000

400

0.84 0.88 0.92 0.96 1.00
Notes: The figure presents a histogram of posterior coverage rates for the Bonferroni
confidence interval from the Monte Carlo experiment described in Section 5. The vertical
axis measures the frequency of various coverage rates. The mid point of each coverage

range is given on the horizontal axis.
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One possibility for some reconciliation of the results would be to examine what types of
priors lead Bayesian results to look like classical results. Sims and Uhlig (1991) invert the
classical distribution for & to calculate the prior and show that it appears unreasonable from
a Bayesian perspective. This approach could also be taken as regards the Bonferroni
intervals for <y derived above. As the coverage rate of the Bayesian confidence interval is
not greatly distorted for the model considered here, it is probably the case that the priors
required for justifying classical results from a Bayesian veiwpoint may not differ to far from
priors considered reasonable by Bayesian analysts. Of course, even if they do differ, this
does not motivate frequentists to change behavior as they believe that the wrong thought

experiment is being undertaken.

VI Summary

The following chapters presented in this thesis represent part of the work done by the author
in attempting to understand the problem at hand, and its implications for empirical work.
On their own, each chapter examines a small piece of this puzzle. Other papers written
which provide information on the questions raised earlier are Elliott and Stock (1992),
Elliott, Rothenberg and Stock (1992), and Cavanagh, Elliott and Stock (1993). Each of

these papers is referenced above at the appropriate point.

The following chapter, chapter 2, examines optimal tests for a unit root when the initial
condition, usually assumed to be fixed, is instead drawn from its unconditional distribution

under the alternative hypothesis. The results of this paper have implications for the above
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analysis in that they provide new tests for a unit root which work well in certain situations.
The theory presented enables comparison with the statistics in ERS and their performance
in this alternative case. In addition, the statistics derived have good properties compared to
the power bounds, and can be inverted for confidence intervals for the first stage in the
Bonferroni method. Also, the null hypothesis of a unit root is interesting in its own right

[see Stock (1994) for a discussion of the uses of unit root tests].

Chapter 3 examines the popular cointegration estimator techniques put forward recently and
examines their performance in the case where « is unknown, but assumed to be one. Such
estimation techniques have recently become extremely popular. The results of this chapter
show quite clearly the problem confronting applied researchers testing long run theories,
whilst roots are apparently very close to one so normal asymptotics are not good guides for
inference, these methods which are asymptotically efficient when a=1 can have huge size
distortions when « is close to but not exactly one. This result is shown both analytically and
with Monte Carlo experiments. Although this chapter does not explicitly examine the role
of pretesting for a unit root, we know from the results of Elliott and Stock (1992) that
pretests will asymptotically misclassify local to unit roots as unit roots, so pretesting will not

rectify this problem.

The fourth chapter examines forward market unbiasedness in the yen/dollar foreign exchange
market. Under the null hypothesis of unbiasedness (see the chapter for details), the forward
exchange rate should be an unbiased predictor of the future spot rate. Allowing y,, to be the

spot rate, and y,,, to be the forward rate, this suggests that y=1 under the null hypothesis.
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This has been rejected in recent examinations using the cointegration framework. Chapter
4 shows that these rejections are conditional on the assumption of a unit root in the exchange
rate, and the hypothesis cannot be rejected if this is not assumed a priori. Thus, it is shown
that the types of theoretical problems discussed in this thesis have real implications, in that
they overturn previous results. This chapter also presents other attempts at distinguishing
hypotheses, notably distinguishing rational expectations from static expectations, using the

local to unity framework and asymptotic theory used in this thesis.
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Appendix 1: Applications

It was mentioned above that it is rare for economic theory to suggest a value for @ in models
such as equation (1). In the absence of these types of theory, the researcher is required to
take some sort of stand, explicitly or implicitly, on the stochastic behavior of y,, (i.e. ¢,
which asymptotically dominates this stochastic behavior). This is not just confined to cases
such as above, where the model remains the same and different asymptotics are used, but
to all applications whether or not the decision is to difference the data to obtain stationarity,
or to employ cointegration techniques, or even to undertake permanent/transitory
decompositions. To give some idea of the pervasiveness of this decision, examples from

recent literature are briefly described.

1. Using Pre-Tests for a Unit Root

In recent work this has been the most popular approach, although often there is no real
reason why the researcher is controlling type I error in this way. This approach, when the
test fails to reject, leads to either differencing or cointegration analysis. When rejected,

normal asymptotics are employed.

Examples in macroeconomics include Stock and Watson (1993), who estimate cointegrating
vectors for money demand and Ogaki (1992), who models dissagregated consumption using
cointegration methods after pretesting for a unit root. Huag (1991) examines the

cointegrating relationship between the government surplus and bonds outstanding using
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cointegrating techniques after testing for a unit root. Hallman, Porter and Small (1991) use
pretests for a unit root in inflation and velocity to suggest the regressing of the change in
inflation (the unit root hypothesis was not rejected here) on lags and a constant (proxying
for velocity, for which a unit root was rejected). Mehra (1991) estimates a VAR using the
price level, productivity adjusted wage and output gap after differencing for stationarity
according to unit root pretests. Alogoskoufis and Smith (1991) regress the change in wages
on the expected change in prices where this is proxied by lagged changes after ADF pretests

suggest that this variable is I(1), and hence can be modelled in differences.

In finance, Hardevoulis (1990) regresses expected returns on the stock market on the lagged

dividend price ratio after testing the later for a unit root using ADF tests (even though his

stated null is that this variable is I(0)).

In international economics, Clarida (1994) pretests log imports, the log of consumption of
domestic goods and the log of the real price of imports for unit roots and upon failure to
reject uses them for cointegration analysis. Burda and Gerlach (1992) do the same for the
log of real imports, real permanent income, the relative price of consumer non durables and
a constructed intertemporal price series, although they do not conduct hypothesis tests on
their cointegrating vector. Evans and Lewis (1993), in examining forward market
unbiasedness as discussed in section 6 above use Apreviously obtained unit root test results
from the literature to justify their cointegrating vector approach. MacDonald and Taylor
(1991) use ADF pretests and then undertake hypothesis tests on cointegrating vectors in

examining relationships between various interest rates. Choudry, McNown and Wallace
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(1991) do the same in testing for long run purchasing power parity (without hypothesis tests
on the cointegrating vector). Bohara and Kaempfer (1991) regress a system including real
GNP, the average tariff rate and a number of other variables in a differenced VAR after

deciding the series were I(1) based on inspection of autocorrelations.

2. Using Asymptotic Normal Distribution
Often, the normal distribution is applied directly with no pretest. This can be due to the

belief that the y,, variables are stationary, or that §=0.

In macroeconomics, Kahn (1992) regresses sales of automobiles on factor prices without

pretests, using standard normal asymptotics. He presents some attempts at correcting for

simultaneity in the current period.

Examples in finance include Hamilton (1992) who examines the predictability of excess
returns in three commodities futures markets around the time of the depression using
variables such as the interest rate, lagged spot rate and lagged futures rate. No pretesting

is undertaken.
3. Using =1 Nonstandard Distribution
Examples in macroeconomics include Friedman and Kuttner (1992), who look at the

relationships between money, income, prices and the interest rate. Cointegration analysis

is performed.
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